domingo, 8 de mayo de 2011

CIRCUITO RLC

CIRCUITO RLC.

CORRIENTE ALTERNA Y REDADTANCIA

           CORRIENTE ALTERNA.






La corriente alterna (ca) se comporta como su nombre lo indica. Los electrones del circuito se desplazan primero en una dirección y luego en sentido opuesto, con un movimiento de vaivén en torno a posiciones relativamente fijas. Esto se consigue alternando la polaridad del voltaje del generador o de otra fuente.
La popularidad de que goza la ca proviene del hecho de que la energía eléctrica en forma de ca se puede transmitir a grandes distancias por medio de fáciles elevaciones de voltaje que reducen las pérdidas de calor en los cables.
La aplicación principal de la corriente eléctrica, ya sea cd o ca, es la transmisión de energía en forma silenciosa, flexible y conveniente de un lugar a otro.
Historia



A partir de los trabajos iniciales de físico Nikola Tesla, el también físico Guillermo Stanley, diseñó, en 1885, uno de los primeros dispositivos prácticos para transferir la CA eficientemente entre dos circuitos eléctricamente aislados. Su idea fue la de arrollar un par de bobinas en una base de hierro común, denominada bobina de inducción. De este modo obtuvo lo que sería el precursor del actual transformador. El sistema usado hoy en día fue ideado fundamentalmente por Nikola Tesla, y pronto perfeccionado por George Westinghouse, Lucien Gaulard, Juan Gibbs y Oliver Shallenger entre los años a 1881 a 1889. Estos sistemas superaron las limitaciones que aparecían al emplear la corriente continua (CC), según se pusieron de manifiesto en el sistema inicial de distribución comercial de la electricidad, utilizado por Thomas Edison.
La primera transmisión interurbana de la corriente alterna ocurrió en 1891, cerca de Telluride, Colorado, a la que siguió algunos meses más tarde otra en Alemania. A pesar de las notorias ventajas de la CA frente a la CC, Thomas Edison siguió abogando fuertemente por el uso de la corriente continua, de la que poseía numerosas patentes (véase la guerra de las corrientes). Utilizando corriente alterna, Charles Proteus Steinmetz, de General Electric, pudo solucionar muchos de los problemas asociados a la producción y transmisión eléctrica.
Corriente alterna vs. Continua
La razón del amplio uso de la corriente alterna viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua.
La energía eléctrica viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica dependen de la intensidad, podemos, mediante un transformador, elevar el voltaje hasta altos valores (alta tensión). Con esto la misma energía puede ser distribuida a largas distancias con bajas intensidades de corriente y, por tanto, con bajas pérdidas por causa del efecto Joule. Una vez en el punto de utilización o en sus cercanías, el voltaje puede ser de nuevo reducido para su uso industrial o doméstico de forma cómoda y segura.
Las matemáticas .


                                                 REACTANCIA CAPACITIVA


Así como la resistencia ofrece oposición a la corriente en un circuito de c.c., la oposición a la c.a. se llamaReactancia,así la capacitancia presenta oposición a la c.a. denominadaReactanciacapacitiva,se simboliza Xc. Así como la resistencia eléctrica se mide en Ohmios también la Xc se mide en Ohmios, y se sustituye por la R en la Ley de Ohm: I = E /R.... donde R = E / I entonces tenemos que Xc = E / I = Ohmios, y se usa para calcular la oposición que presenta un capacitor alpaso de la c.a. La reactancia de un capacitor es inversamente proporcional a dos factores: La capacitancia y la frecuencia del voltaje aplicado, expresado en fórmula, tenemos:
                                               Donde:   Xc = Reactancia capacitiva, en Ohms(Ω)
Xc = 1 /27πfc =(Ω)Ohmios                      π=Constante 3.1416 radianes
                                                                     f = Frecuencia de la tensión aplicada en volts
                                                                     c = Capacitancia en faradios
Xc = Reactancia capacitiva, en (Ω)Ohmios;      π   = constante 3,1416 radianes;  f   = Frecuencia de la tensión aplicada, en Voltios y  c= Capacitancia del capacitor, en Faradios
Ahora bien, en un circuito de c.c. la oposición a la corriente se llama Resistencia, pero en un circuito de c.a. se le llama Impedancia, que se simboliza con la letra Z y se mide también en Ohms y se usa la Ley de Ohm para calcularla, sustituyendo laR porZ , tenemos:Z =E / I
Observe el circuito ilustrado, el cual tiene aplicado una tensión de 75 voltios y un flujo de 3 amperes de c.a.: la Impedancia del capacitor es de: 25 Ω
    Z = E/l = 75/3 = 25 Ù
     
1
También podemos calcular la Impedancia de un circuito capacitivo mediante la fórmula:

fórmula
Si la Reactancia Capacitiva del circuito es de 6 Ω y la resistencia es de 8 Ω, cuál será la Impedancia?
Respuesta Z = 10 Ω;
fórmula
impedancia

DE DONDE VIENE: formula ; Utilizando el teorema de Pitágoras para el área sombreada de la figura, tenemos: X = Xc2 + R2 ya que X es la hipotenusa de un Triángulo rectángulo: como el ángulo de fase es la diferencia en grados entre el tiempo en que dos ondas senoidales pasan por el eje cero, se dice que en un circuito puramente capacitivo el voltaje se atrasa a la corriente en 90° : o lo que es lo mismo, la corriente se adelanta al voltaje en 90°.



EQUIPO3:CORRIENTE ELÉCTRICA

CORRIENTE ELÈCTRICA.




La corriente eléctrica es una corriente de electrones que atraviesa un material.
Algunos materiales como los "conductores" tienen electrones libres que pasan con facilidad de un átomo a otro.
Estos electrones libres, si se mueven en una misma dirección conforme saltan de un átomo a átomo, se vuelven en su conjunto, una corriente eléctrica.
Para lograr que este movimiento de electrones se de en un sentido o dirección, es necesario una fuente de energía externa.
Cuando se coloca un material eléctricamente neutro entre dos cuerpos cargados con diferente potencial (tienen diferente carga), los electrones se moverán desde el cuerpo con potencial más negativo hacia el cuerpo con potencia más positivo. Ver la figura
Los electrones viajan del potencial negativo al potencial positivo. Sin embargo se toma por convención que el sentido de la corriente eléctrica va desde el potencial positivo al potencial negativo.
Corriente eléctrica. Flujo de electrones de un cuerpo negativo a un cuerpo positivo - Electrónica Unicrom
Esto se puede visualizar como el espacio (hueco) que deja el electrón al moverse de un potencial negativo a un positivo. Este hueco es positivo (ausencia de un electrón) y circula en sentido opuesto al electrón.
La corriente eléctrica se mide en Amperios (A) y se simboliza con la letra I.
Hasta aquí se ha supuesto un flujo de corriente da va de un terminal a otro en, forma continua. A este flujo de corriente se le llama corriente continua. Hay otro caso en que el flujo de corriente circula, en forma alternada, primero en un sentido y después en el opuesto. A este tipo de corriente se le llama corriente alterna.



Las Leyes de Kirchoff


La corriente continua (CC), es el resultado del flujo de electrones (carga negativa) por un conductor (alambre o cable de cobre casi siempre), que va del terminal negativo al terminal positivo de una batería.
Circula en una sola dirección, pasando por una carga. Un foco / bombillo en este caso.

La corriente continua no
cambia su magnitud ni su
dirección con el tiempo.

No es equivocación, la corriente eléctrica sale del terminal negativo y termina en el positivo.
La corriente continua no cambia su magnitud ni su dirección con el tiempo - Electrónica Unicrom
Lo que sucede es, que es un flujo de electrones que tienen carga negativa.
La cantidad de carga de electrón es muy pequeña. Una unidad de carga muy utilizada es el Coulomb (mucho más grande que la carga de un electrón).
1 Coulomb = la carga de 6 280 000 000 000 000 000 electrones
ó en notación científica: 6.28 x 1018 electrones
Para ser consecuentes con nuestro gráfico y con la convención existente, se toma a la corriente como positiva y ésta circula desde el terminal positivo al terminal negativo.

La corriente continua producida por una batería - Electrónica Unicrom
Lo que sucede es que un electrón al avanzar por el conductor va dejando un espacio [hueco] positivo que a su vez es ocupado por otro electrón que deja otro espacio [hueco] y así sucesivamente.
Esto genera una serie de huecos que viajan en sentido opuesto al V de los electrones y que se ede entender como el sentido de la corriente positiva que se conoce.
La corriente es la cantidad de carga que atraviesa la lámpara en un segundo, entonces
Corriente = Carga en coulombs / tiempo
ó
I = Q / T
Si la carga que pasa por la lámpara es de 1 coulomb en un segundo, la corriente es de 1 amperio
Ejemplo: Si por la foco / bombillo pasa una carga de 14 coulombs en un segundo, entonces la corriente será:
I = Q / T = 14 coulombs/1 seg = 14 amperios
La corriente eléctrica se mide en (A) Amperios y para circuitos electrónicos generalmente se mide en mA (miliAmperios) ó (uA) microAmperios. Ver las siguientes conversiones.
1 mA (miliamperio) = 0.001 A (Amperios)
1 uA (microAmperio) = 0.000001 A (Amperios)
Nota: Coulomb = Coulombio


Las dos primeras leyes establecidas por Gustav R. Kirchhoff (1824-1887) son indispensables para los cálculos de circuitos, estas leyes  son:
1. La suma de las corrientes que entran, en un nudo o punto de unión de un circuito es igual a la suma de las corrientes que salen de ese nudo. Si asignamos el signo más (+) a las corrientes que entran en la unión, y el signo menos (-) a las que salen de ella, entonces la ley establece que la suma algebraica de las corrientes en un punto de unión es cero:   
                        (suma algebraica de I)   Σ I = 0 (en la unión)
2. Para todo conjunto de conductores que forman un circuito cerrado, se verifica que la suma de las caídas de tensión en las resistencias que constituyen la malla, es igual a la suma de las f.e.ms. intercaladas. Considerando un aumento de potencial como positivo (+) y una caída de potencial como negativo (-), la suma algebraica de las diferencias de potenciales (tensiones, voltajes) en una malla cerrada es cero: 
                        (suma algebraica de E)    Σ E - Σ I*R = 0    (suma algebraica de las caídas I*R, en la malla cerrada)
Como consecuencia de esto en la práctica para aplicar esta ley, supondremos una dirección arbitraria para la corriente en cada rama. Así, en principio, el extremo de la resistencia, por donde penetra la corriente, es positivo con respecto al otro extremo. Si la solución para la corriente que se resuelva, hace que queden invertidas las polaridades, es porque la supuesta dirección de la corriente en esa rama, es la opuesta.
Por ejemplo:

Fig. 12
Las flechas representan la dirección del flujo de la corriente en el nudo. I1 entra a la unión, considerando que I2 e I3 salen. Si I1 fuera 20 A e I3 fuera 5 A, I2 tendría 15 A, según la ley de voltaje de I1=I2 + I3. La ley de Kirchoff para los voltajes es, la suma de voltajes alrededor de un circuito cerrado es igual a cero. Esto también puede expresarse como la suma de voltajes de un circuito cerrado es igual a la suma de voltajes de las fuentes de tensión: 

Fig. 13
En la figura anterior, la suma de las caídas de voltaje en R1, R2 y R3 deben ser igual a 10V o sea, 10V =V1+ V2+ V3. Aquí un ejemplo:


Fig. 14

Las corrientes de I2 e I3 y la resistencia desconocida R3 centran todos los cálculos, usando la teoría básica de la corriente continua. La dirección del flujo de la corriente está indicado por las flechas.
  • El voltaje en el lado izquierdo (la resistencia R1 de 10 Ω), está saliendo del terminal superior de la resistencia. 
  •  La d. d. p. en esta resistencia R1 es de I1 * R o sea, 5 voltios. Esto está en oposición de los 15 voltios de la batería. 
  •  Por la ley de kirchoff del voltaje, la d. d. p. por la resistencia R2 de 10 Ω es así 15-5 o sea, 10 voltios. 
  •  Usando la ley Ohm, la corriente a través de la resistencia R2 10 Ω es entonces (V/R) 1 amperio. 
  •  Usando la ley de Kirchoff de la corriente y ahora conociendo el I1 e I3, el I2 se encuentra como I3=I1+I2 por consiguiente el amperaje de I2= 0.5A. 
  •  De nuevo, usando la ley de Kirchoff del voltaje, la d. d. p. para R3 puede calcularse como, 20 = I2*R3 +10. El voltaje por R3 (el I2*R3) es  entonces 10 voltios. El valor de R3 es (V/I) o 10/0.5 o 20Ω.